29

New data-acquisition software for the Leuven dual-PC controlled Purkinje eye-tracking system

Paul M. J. van Diepen

University of Leuven, Belgium

3Introduction

Table 1: Overview of the new data acquisition software.
3
P-sample
4
Configuration Structure
4
P-sample Configuration Structure
4
Operation Modes
5
PU-ST Communication
6
Communication Macros and Functions
7
PU Status Information
9
PU Status Macros
9
Table 2: PU status bits
10
Example
11
P-pview
11
P-report
12
Step 1: Raw data processing
13
Step 2: False lock discrimination
13
Step 3: Remove short gaps
13
Step 4: Saccade check
13
Step 5: Fixation check
14
Step 6: Blink extension
14
Step 7: Debounce flags
14
Step 8: Remove short flags
14
Output format
14
Event-type Keywords
15
Parameter Keywords
16
Example Settings for P-report
19
Settings-file, example 1 (p-report’s default values)
19
Settings-file, example 2 (presently used by the author)
20
P-vgacal and P-vstcal
20
Command Line Arguments for P-vgacal and P-vstcal
21
Other Programs
22
P-xyz2p
22
P-p2xyz
22
P-join
23
P-info
23
File Management
23
Year 2000
24
References
24
Author Note
24
Appendix A: Listing of ST-EXAMP.C, a hypothetical experiment
25
Appendix B: Saccade/Fixation/Oscillation Categorization
28

Introduction

This report describes software, developed by the author, for the Leuven dual-PC controlled Purkinje eye-tracker system, that substitutes older software by Van Rensbergen and De Troy (1993). Please refer to this report when you’ve used this software.

Table 1: Overview of the new data acquisition software.

Program
Platform
Description

p-sample
“PU”: DOS (no QEMM, EMM386, etc); Connected to DPI tracker with Labmaster DMA; Connected to ST with 8-bit parallel connection.
Data acquisition program.

p-vgacal
“ST”: DOS; Connected to PU
VGA/SVGA calibration program.

p-vstcal
“ST”: DOS, ATVista; Connected to PU
ATVista calibration program.

p-pview
Windows 95/98 or NT
P-file viewer, to explore configuration settings, calibration details, and sample data (including flags, marks, and comments).

p-info
DOS (or DOS window)
Displays the first configuration in a p-file.

p-report
DOS (or DOS window)
Filters p-files, and generates text-format reports.

p-join
DOS (or DOS window)
Combines p-files to a single p-file.

p-xyz2p
DOS (or DOS window)
Converts old format pu-x and pu-y files (and optionally pu-z files) to p-files.

p-p2xyz
DOS (or DOS window)
Converts p-files to pu-x, pu-y, and pu-z files.

See Table 1 for an overview of the new software. The main program, p-sample, is a data-acquisition program that replaces psample. It simplifies the communication between the data-PC and the stimulus-PC (henceforth called “PU”, and “ST” respectively), and significantly increases the communication speed. It allows comments (e.g., the trial number, or a description of the experimental condition) and marks (a number between 0 and 255) to be sent from the ST to the PU, which are stored along with the eye-movement data. For compatibility, the two psample “user flags” are maintained in p-sample. Other than in psample, data are temporarily saved to XMS memory, and saved to disk only after completion of the experimental trial. In this way, the number of lost samples is virtually reduced to zero. Data is saved in a new “p-file” format, storing x, y, and status data from the eye-tracker, together with experimenter supplied flags, marks, and comments, into a single, compressed file. A final feature of p-sample is a simulation mode that tracks mouse-movements instead of eye-movements, to facilitate the development of new experiments.

After the experiment, p-report can be used to convert data-files to descriptive text files. This program replaces the Van Rensbergen and De Troy (1993) programs prefix and preport. The data-processing and output format of p-report can be customized to a great extent with a “settings” file, to meet the needs of the experimenter. Optionally, p-report generates “q-files”, which are p-files that contain the adjusted sample data.

P-pview is a Windows 95/98/NT program to explore p-files. It shows configuration settings, calibration details, and sample data, including marks, flags, and comments. Alternatively, DOS program p-info can be used to view the first configuration in a p-file.

Data files in the p-file format can be combined using p-join, resulting in a single p-file, containing multiple configurations. This simplifies data-management (E.g., all p-files of one participant can be combined). P-files are sorted by date.

Calibration programs interface to p-sample in the same way as experiments. Two calibration programs are available: p-vgacal (for VGA and SVGA) and p-vstcal (for the Truevision ATVista Videographics Adapter).

A conversion utility, p-xyz2p, is supplied to convert data-files in the old “pu-x” and “pu-y” format to the p-file format. In this way, the new software can be used with old data. It is also possible to convert p-files to pu-x and pu-y files, using p-p2xyz. This utility also generates “pu-z” text files, that contain information about marks and comments that were present in the p-files. It is possible to obtain pu-x, pu-y and pu-z files directly from p-sample. However, this is not advised, because the conversion from p-files to pu-xyz files is not fully reversible. Configure p-sample to save data in the p-file format, and use p-p2xyz when the old format is required.

All DOS programs mentioned above all display a simple help text, when they are executed with argument “/?”. In the next sections, a more extensive description is given. These programs are written in Borland C (version 3 for DOS), with int referring to a 16-bit signed value, long to a 32-bit value, char to a 8-bit signed, and byte to a 8-bit unsigned value.

P-sample

P-sample runs on the PU, and interfaces to the eye-tracker and the ST. Since p-sample directly accesses extended memory, an XMS-driver has to be present, such as HIMEM.SYS. No other memory managers, such as QEMM or EMM386, should be present. The PU should be a 486 PC or better, with VGA and a mouse.

P-sample takes one (optional) argument, which will usually be the name of the experimenter (max. eight characters). Settings will be saved in a configuration file with this name, and extension “.SET”. When p-sample is successfully started, the settings are displayed, and can be altered by using the mouse and keyboard. Not all of the displayed parameters should be set manually. Calibration parameters, for example, normally will be set by the calibration program.

Configuration Structure

All settings are saved in a structure called “configuration”, which has the following format, defined in header file p-pu.h (all code is Borland C):

P-sample Configuration Structure

typedef struct

{

 char id[sizeof(P_SAMPLE_ID)];

 int version;

// E.g.: version 1.00 -> 100, 3.20 -> 320

 char outformat;

// bit 0 => pu-xyz (old format), bit 1 => p-files

 char simulate;

// TRUE when mouse-simulation was used

 char subject[NAMESIZE];
// name of subject

 char experimenter[NAMESIZE];
// name of experimenter

 char monitor_type[MONTYPESIZE];
// monitor description

 struct

 {

 int w, h;

// resolution of stimulus, in pixels

 int width, height;

// dimensions of stimulus, in millimeters

 int distance;

// distance to stimulus, in millimeters

 int pux0, puy0;

// upper left corner of stimulus, in pu-coordinates

 int puxrange, puyrange;

// pu-range == maximum - minimum

 int dx, dy;

// maximum deviation (in pixels) before FALSE_LOCK

 } dim;

 time_t ttrial;

// time of most recent trial start

 time_t tcalibration;

// time of most recent calibration

 int ncalpoints;

// number of calibration points

 double xcor;

// x-correlation

 double ycor;

// y-correlation

 double xa, xb;

// x = pux * xa + xb

 double ya, yb;

// y = puy * ya + yb

 int calx[NCAL], caly[NCAL];
// pixel coordinates of calibration points

 int calpux[NCAL], calpuy[NCAL];
// measured pu-coordinates at calibration points

 unsigned maxdt;

// max. too late for a sample, in 1/100 of ms

 int nsleep;

// number of samples to be stored in sleepmode

 double scale_x, scale_y;

 int saccade_lower_bound;

// parameters for saccade/fixation

 int saccade_upper_bound;

// categorization

 byte channels;

// which AD-channels are stored?

 byte programs;

// Bit 0 = P-REPORT; Bit 1 = P-P2XYZ;

// Bit 2 = P-XYZ2P; Bit 7 = P-SAMPLE

 double safe_deviation;

// Safe flag: max position deviation

 short int sac_safe_velocity;
// Saccade safe flag: min velocity

 short int sac_safe_duration;
// Saccade safe flag: min duration

 byte reserved[76];

// for future expansions, should be set to zero!

} configuration;

The configuration structure is stored in an experimenter’s settings-file, and at the beginning of each p-file. The old pu-xy file header cannot completely store the configuration above. Unused space in the pu-xy file header is used to store additional information.

Operation Modes

When p-sample is “run” from its settings menu, a display appears that shows several status fields on the left-hand side of the screen, and a large “eye-cursor” area on the right-hand side. A message is shown, “connecting”, indicating that the PU is ready to interface with the ST. After the connection has been established, PU is in the “idle” mode, that is typically used by the ST to retrieve, and possibly alter, the configuration structure. In the idle mode, eye-data are sampled, but not saved. Comment strings and marks are discarded as well. Three additional modes exist: “sleepmode”, “trial”, and “pause”. In pause mode, eye-data are not saved, but comments and marks are. Eye-data, as well as comments and marks, are saved in the trial mode. The sleepmode is a combination of pause mode and trial mode: Comments and marks are saved, as well as a specified number most recent samples (configuration.nsleep), preceding the transition to trial mode. The ST is in control of the PU mode, but not all mode-transitions are possible. For example : The sleepmode can only follow the idle mode. Typically, the following sequence will be used in experiments (the complete set of ST commands will be discussed later):

IDLE

· Start of the experiment. ST retrieves the configuration, checks or alters some parameters, and sends it back to the PU.

SLEEPMODE

· Display a fixation dot on the screen, and enter sleepmode by issuing the puStartSleepmode on the ST. Send comment-strings with information about the coming trial to the PU. Check if the participant is looking at the fixation dot.

TRIAL

· Start the trial: Display stimulus and enter trial mode with the puStartTrial command.

PAUSE

· If necessary, pause the trial with the puPauseTrial command, and continue again with puResumeTrial. During a pause, eye-data is available but not saved.

IDLE

· Stop the stimulus presentation with puStopTrial. The PU continues sampling, but the eye-data is not stored anymore. Eye-movements and/or button-presses can be used to obtain a response from the participant.

· If this was a successful trial, data-saving should explicitly be initiated with the puSaveData command.

· If the next trial has to be saved in another data-file, puNewDataFile instructs the PU to start a new file.

· If this was the last trial of the experiment, the ST should send the puStopExperiment command to the PU. Otherwise, a new trial can be started (SLEEPMODE).

PU-ST Communication

In the previous section, several “ST commands” have been introduced. The complete set of commands is available from the file p-pucomm.c (with include files p-pucomm.h, p-pu.h, p-io8255.h, and p-io8255.c). To use these commands, simply include the p-pucomm.c file in your experiment code (#include <p-pucomm.c>). Before the ST can use these commands, a connection with the PU has to be established with the routine pInit8255master, also available from p-pucomm.c. The following is a list of functions and macros in p-pucomm, each with a short description. All take an argument escape, which defines an escape character that terminates the routine. If escape==0, keypresses are not monitored. Otherwise, keypresses are compared to the escape value. If they are equal, the routine terminates, and returns non-zero. In that case, the PU might be waiting for data to send or receive, and terminatePUcommunication has to be called to terminate the connection. Otherwise, the routine returns zero, after having completed the data transfer. The most recent keypress, as returned by the bios function bioskey(0), is stored in the global variable lastbioskey. This variable can be used to implement a less destructive escape routine.

For example, you might want to use the ‘Esc’ key to bring up a calibration screen, and the ‘~’ key to terminate the experiment in case of an emergency. To achieve this, substitue ‘~’ for the escape argument in the communication routines. If such a routine returns nonzero, apparently the ‘~’ key has been pressed, and the experiment has to be terminated. Otherwise, check the lastbioskey variable after the trial has been completed. If it equals the ‘Esc’ code (i.e., 27), initiate your re-calibration routine, before continuing with the next trial. Don’t forget to reset lastbioskey to zero afterwards!

Communication Macros and Functions

puSetFlag1(char escape): Set user flag 1

puResetFlag1(char escape): Reset user flag 1

puSetFlag2(char escape): Set user flag 2

puResetFlag2(char escape): Reset user flag 2

puSetFlags(char escape): Set both user flags 1 and 2

puResetFlags(char escape): Reset both user flags 1 and 2

puSetFlag1ResetFlag2(char escape): Set user flag 1 and reset user flag 2

puResetFlag1SetFlag2(char escape): Reset user flag 1 and set user flag 2

puPulseFlag1(char escape): Set user flag 1 for 1 sample, then reset again

puPulseFlag2(char escape): Set user flag 2 for 1 sample, then reset again

puPulseFlags(char escape): Set both user flags for 1 sample, then reset again

puStimulusAbsent(char escape): Reset stimulus present flag

puStimulusPresent(char escape): Set stimulus present flag

puStartSleepmode(char escape): Enter sleepmode

puStartTrial(char escape): Enter trial mode

puPauseTrial(char escape): Pause trial

puResumeTrial(char escape): Resume trial

puStopTrial(char escape): End of trial

puNewDataFile(char escape): Start with a new data file

puStopExperiment(char escape): Stop the experiment (the settings page appears)

puUpdateScaling(char escape): Notifies PU that the display dimensions, the false lock range, and/or calibration parameters have been altered in the configuration structure. This command is typically issued during the calibration phase, and is required to update some internal parameters on the PU that are not accessible from the ST.

puSaveCFG(char escape): Save the current configuration (on the PU) to the settings file.

puSaveData(char escape): Save the data of the completed trial to disk.

puClearDisplay(char escape): Clear the eye-cursor display of the PU

int getPUsampleInfo(byte *puStatus, byte *previousStatus, unsigned long *t, unsigned int *dtStatus, coordinates *xy, coordinates *speed, coordinates *xySacStart, coordinates *xySacPeak, unsigned int *dtPeak, char escape):

Get information about the current eye-state and button-state from the PU. Use “NULL” for parameters that are not of interest. The speed of this function depends on the number of parameters that are requested. Coordinates are structures, defined in p-pu.h as follows:

typedef struct{ int x; int y;} coordinates;

Coordinates are measured in pixel units, unless otherwise noted.

“puStatus” gives the current eye-state and button-state (see further);

“previousStatus” gives the preceding eye-state;

“t” is the current PU-time, in milliseconds;

“dtStatus” gives the duration of the current eye-state, in ms;

“xy” holds the current coordinates of the eye, in pixel units;

“xySacStart” and “xySacPeak” are the coordinates at the beginning, respectively at the peak, of the most recent (possibly ongoing) saccade;

“dtPeak” is the time elapsed since the most recent saccade peak, in ms.

“speed” is the difference between the current coordinates, and the coordinates 4 ms earlier, measured in visual degrees (i.e., speed.x/4 and speed.y/4 are the horizontal and vertical speed of the eye, in visual degrees per ms).

int getPUstatus(byte *puStatus, char escape): Get the current eye- and button-state.

int getPUtime(unsigned long *t, char escape): Get the current PU-time, in ms.

int getPUcoordinates(coordinates *puxy, char escape): Get the current eye-coordinates, in pu-values.

int sendPUstring(const char *str, byte *bufferStatus, char escape): Send the NULL-terminated comment-string “str“ to the PU. “bufferStatus” is zero when the operation was successful, non-zero on PU buffer overflow. If there is little chance that buffer overflow will occur (the string buffer for one trial is about 500 Kbytes large), you do not need to check the bufferStatus. In that case, fill in NULL.

int sendPUformattedString(byte *bufferStatus, char escape, const char *fmt, ...): Same as sendPUstring, but sending a formatted string (as in the standard printf function; maximum length of the resulting string is 300 chars).

int sendPUmark(const byte mark, byte *bufferStatus, char escape): Send a mark (i.e., an unsigned number between 0 and 255) to the PU. The mark is stored on the PU in the same buffer that holds comment-strings, and bufferStatus informs you about the status of the buffer (see sendPUstring).

int putPUchar(int x, int y, byte chr, char escape): Put a character chr on the eye-cursor display, on pixel-position (x,y).

int putPUstring(int x, int y, char *str, char escape): Put the NULL-terminated string str on the eye-cursor display, starting on pixel-position (x,y).

int putPUformattedString(int x, int y, char escape, const char *fmt, ...): Put the formatted, NULL-terminated string fmt (as in the standard printf function; maximum length of the resulting string is 300 chars) on the eye-cursor display, starting on pixel-position (x,y).

int getPUsystemInfo(system_info *info, char escape): Retrieves the system_info structure from the PU:

typedef struct

{

unsigned long samplespace;
// remaining memory for eye-data

unsigned long commentspace;
// remaining memory for marks and comments

} system_info
int getPUconfiguration(configuration *cfg, char escape): Retrieves the current PU configuration structure (see previous section).

int sendPUconfiguration(configuration *cfg, char escape): Send configuration back to PU. Note that a change of cfg.dim.pux0, cfg.dim.puy0, cfg.dim.puxrange, cfg.dim.puyrange, cfg.dim.w, or cfg.dim.h, makes the current calibration invalid! A change of cfg.dim.dx, cfg.dim.dy, cfg.dim.width, cfg.dim.height, or cfg.dim.distance, requires a call of puUpdateScaling to update internal PU parameters that are not part of the configuration structure

int getPUstatistics(statistics *stats, char escape): Get statistics of an interval of samples, designated by tquery and dtquery (internal PU variables, that can be altered by the ST with the sendPUtquery and sendPUdtquery commands). When dtquery > 0, all samples from the interval tquery <= t < tquery + dtquery are considered. Otherwise, interval tquery + dtquery < t <= tquery is analyzed. When tquery == -1, tquery is replaced by the current time in the intervals above. The function returns a statistics structure:

typedef struct

{

int n;

// number of good samples in the interval

int minx, maxx;
// minimum and maximum x value (pu units)

int miny, maxy;
// minimum and maximum y value (pi units)

unsigned long sumx, sumy;
// sum of x and y values

double sumx2, sumy2;
// sum of x2 and y2 values

} statistics
int getPUoldSample(coordinates *puxy, int *puStatus, char escape): Get the full (two byte) *puStatus, and eye-position *puxy (in pu units), of the sample at t=tquery (set by sendPUtquery). Afterwards, tquery is incremented with the value dtquery. (set by sendPUdtquery). When sample tquery is not available (tquery < tfirstsample or tquery > tlastsample), *puStatus, *puxy.x, and *puxy.y are set to –1.

int sendPUtquery(long tquery, char escape): Set PU variable tquery (interval start, default: -1)

int sendPUdtquery(int dtquery, char escape): Set PU variable dtquery (interval width, default: 0). If dtquery < 0, then the interval goes backwards in time, and tquery is the end of the interval, instead of the beginning.

int waitForPU(char escape): Wait until PU completed the previous command.

int terminatePUcommunication(char escape): Break routine that terminates the ST-PU connection. Use this routine only in case of emergency, because it terminates the ongoing trial, and may result in loss of data of that trial.

PU Status Information

Some of the routines above return status information puStatus. This is a 16-bit value, but most routines only return the lower 8 bits. Each bit represents a status-flag (see Table 2).

Header file p-pu.h contains macros to address these flags. It is recommended to use these macros, instead of directly addressing the status-bits, to assure compatibility with future versions of p-sample. Here is a list of these macros (status is a variable containing the PU status):

PU Status Macros

puSignalError(status):
TRUE in case of signal error

puTrack(status):
FALSE in case of signal error

puBlink(status):
TRUE in case of blink

puRightKeyUp(status):
TRUE if the right button is up

puLeftKeyUp(status):
TRUE if the left button is up

puRightKey(status):
TRUE if the right button is down

puLeftKey(status):
TRUE if the left button is down
puTimeOut(status):
TRUE if the most recent sample was taken too late

puFalseLock(status):
TRUE if eye coordinates are too far from the display

puSafe(status):
TRUE if the Safe bit is set

puFixation(status):
TRUE if the current eye-state is a fixation
puGoodFixation(status):
TRUE if the current eye-state is a fixation, and no false lock

puSafeFixation(status):
TRUE if puGoodFixation and puSafe are both TRUE

puFalseLockFixation(status):
TRUE if the current eye-state is a false lock fixation

puSaccade(status):
TRUE if the current eye-state is a saccade

puGoodSaccade(status):
TRUE if the current eye-state is a saccade, and no false lock

puSafeSaccade(status):
TRUE if puGoodSaccade and puSafe are both TRUE

puFalseLockSaccade(status):
TRUE if the current eye-state is a false lock saccade

puFlag1(status):
TRUE if user flag 1 is set

puFlag2(status):
TRUE if user flag 2 is set
puPause(status):
TRUE if the PU is in pause mode

puStimPresent(status):
TRUE if a stimulus is present

puInactive(status):
TRUE if the Purkinje is inactive

puSacOrFix(status):
TRUE if the current eye-state is a fixation or a saccade

puFalseLockSacOrFix(status):
TRUE if the current eye-state is a false lock saccade or a false lock fixation
puGoodSacOrFix(status):
TRUE if the current eye-state is a good fixation or saccade

puEyeState(status):
Returns the 4 bits that identify the current eye-state: fixation-bit, track-bit, signal error-bit, and the false lock-bit (the safe-bit is not included!). Use this macro to monitor changes in the eye-state. In theory, 4 bits can code 16 different eye-states, but in practice, these are the possible states: good fixation, false-lock fixation, good saccade, false-lock saccade, blink, signal error, Purkinje inactive.

Table 2: PU status bits

Lower status byte
Upper status byte

Bit
Flag description
Bit
Flag description

0
Right key
8
User flag 1

1
Left key
9
User flag 2

2
Safe (from version 2.00)
10
Stimulus present

3
Fixation
11
Pause

4
False lock
12
Reserved

5
Sample time-out
13
Reserved

6
Track/Blink
14
Reserved

7
Signal Error
15
Reserved

Except for saccades (see below), the Safe flag is set if the current eye position does not deviate much from the previous three samples. To avoid floating point calculations, this test is implemented as follows: For each of the three previous samples, the absolute difference of horizontal and vertical eye position (in pu units), relative to the current sample, are added, and compared with the maximally allowed deviation. The configuration setting “safe_deviation” represents the maximum position deviation in visual degrees. When p-sample initializes, this value is multiplied by the average number of pu units per visual degree. The Safe flag can be interpreted as an indicator of local position stability.

During saccades, the Safe flag is defined differently. The flag is set if (1) a saccade is in progress for longer than the minimum duration, specified by configuration setting “sac_safe_duration” (in ms), and (2) the eye speed is at least equal to configuration setting “sac_safe_velocity” (visual degrees/sec; refer to the p-sample source code for the actual implementation). Once the Safe flag is set, it remains set until the eye is slowing down. After the Safe flag has been reset again, it remains reset until the end of the saccade. Hence, the Safe flag will be on during (at most) a single continuous period of each saccade. This flag can be useful in experiments that employ display changes during saccades.

Example

Appendix A lists an example of a program, running on the ST, that demonstrates most functions that will be used in an experiment. The source code of p-vstcal and p-vgacal (not included in this report) are also illustrative for the communication with p-sample.

P-pview

Experiment data generally will be processed automatically by p-report (see below). However, p-pview can be used to manually inspect raw sample data. P-pview is the only Windows program of the present software package. The data acquisition PC (the “PU”) should operate under MS-DOS exclusively, and consequently, p-pview cannot be used on that computer. The DOS program p-info can be used instead, to obtain p-file configuration information. In most occasions, however, p-files will be on your desktop computer, running at least Windows 95. Associate p-pview with the extension of your p-files (see below: File Management).

The main window of p-pview displays the configuration settings of the p-file. If the p-file contains more than one configuration, each of these can be inspected. Two additional windows can be opened: a Calibration window and a Data window.

The Calibration window graphically displays the calibration points, and the associated position measurements. Move the mouse cursor across this window, to get to exact pixel and pu values, associated with the cursor position.

The Data window is modeled after pgraph, but several changes were made to accommodate the p-file format. The graphical display of the Data window shows two curves that represent the horizontal and vertical eye position as a function of time, together with five lines that reflect the binary state of the user flags, right and left key, and the stimulus presence flag. Move the mouse cursor across the graph to select a sample (a vertical line indicates that selected sample). Below the graph, information appears about the selected sample: time, eye state, eye position, and the most recent mark.

Short vertical bars in the graph indicate that during that sample, a comment or mark was sent to p-sample. Move the cursor to these bars to inspect their content. The value of a mark is visible below the graph. To view the content of a comment, press the left mouse button, while the mouse cursor is on (or near) the comment bar.

Most of the buttons next to the graph in the Data window represent events that can be present in the sample data. Press these buttons to go to the next occurrence of these events, starting after the event at the currently selected sample.

It is possible to open more than one instance of the p-pview program at the same time. In this way, two p-files can be visually compared. This can be useful to inspect the effects of p-report data processing: Instruct p-report to generate a “q-file” (i.e., a p-file with adjusted sample data), and use p-pview to compare this file with the original p-file.

P-report

In Van Rensbergen and De Troy (1993), two programs are described for converting the raw eye-data to a text file that can be imported in statistical software packages, such as SAS. The program, prefix, cleans the raw data, and subsequently preport converts the data to relevant statistics, such as the duration and coordinates of a fixation. The output format of preport is fixed, and does not incorporate new features of the new p-sample program. Therefore, a new data processing program has been developed, p-report, that combines and extends the previous prefix and preport programs. P-report is a DOS program, started from the command line with the following format (fields between <> have to be replaced with the appropriate values; fields between [] are optional; all other symbols have to be copied literally) :

P-REPORT <infile> [[+]<reporttfile>] [/q[=[+]<outpfile>]] [@<settingsfile>] [/l[=[+]<logfile>]] [/<trial1>] [/-d]

Argument infile is required, and specifies the eye-data file (p-file format). Optional argument reportfile specifies the name of the output file. If no output file is given, the infile name is taken, with the last character of the extension changed to ‘r’ (e.g., if the infile is PU010298.03P, the derived reportfile is PU010298.03R). A + sign preceding reportfile causes the output of p-report to be appended to the specified output file. Otherwise, a new output file is created.

If argument outpfile is supplied, the adjusted sample data is stored in this file, using the p-file format. To distinguish an adjusted sample data file from the source p-file, it is called a “q-file”. Format of p-files and q-files is identical, but in q-files bit 1 of configuration.programs is set, to indicate that the data has been processed by p-report. A + sign preceding outpfile indicates that sample data is to be appended to that file. If only switch /q is supplied, the q-file is named after the infile name, changing the last character of the extension to ‘q’ (e.g., PU010298.03Q).

The settingsfile, following the @ symbol, designates a file with settings that have to be used. Switch /l requests a log file to be created. If no logfile name is given, it will be derived from infile, by changing the third character of its extension to ‘l’. If logfile is preceded by a + sign, log info is appended to the existing log-file. The argument trial1 specifies the trial number, associated with the first trial in the data-file (default: trial1=1). Finally, switch /-d suppresses log information to be displayed.

The settings-file is a text-file that specifies how p-report should process the raw data, and how to report it. In the following description of p-report, the various keywords and parameters that can appear in the setting-file will be introduced. The default settings are listed at the end of this section.

Data is filtered by eight steps, in a user-specified order. Not all steps have to be performed. Use keyword steps, followed by the step numbers in the desired order, to select steps. All steps, except step 1, may be performed more than once.

Step 1: Raw data processing

This is the first, obligatory step in p-sample. In this step, raw data is read from the input file. During this operation, several actions can be performed on the data.

Keyword clean requests that potentially bad samples (usually with unexpected 1-ms user flags) are removed (i.e. categorized as signal errors). Note that these bad sample only found in old pu-files, generated by the previous psample. By default, this option is on. To disable it, use the same keyword with a slash preceding it: /clean.

Keyword refix requests that the saccade/fixation separation-algorithm is applied again to the raw data. By default, this option is disabled (/refix), and the on-line categorization that was performed during the experiment is used. If the refix option is enabled, parameters sac_lower and sac_upper should be set to the desired values. The algorithm for saccade/fixation categorization is described in van Diepen, Ruelens, and d'Ydewalle (in press), and in Appendix B of this paper. Appendix B also describes off-line saccade/oscillation discrimination, implemented in p-report: Purkinje signals that are categorized as saccades, sometimes are in fact internal oscillations in the eye-tracker, especially occurring if it needs tuning. Enable option oscillation to detect these events, and change their state to “oscillation”. Parameters: osc_lower, osc_upper, and direction_threshold.

The eye-data contains five types of flags: stimulus-present, user flag 1, user flag 2, left-key and right-key. With the keywords stimulus, flag1, flag2, rkey, and lkey, you can select which flags should be extracted from the eye-data. A keyword preceded by a slash (e.g., /lkey) causes that flag to be ignored. The keyword flags can be used to select all flags at once.

Step 2: False lock discrimination

In step 2, fixation and saccades are checked for false locks. A false lock is a sample with coordinates outside the cfg.dim.w × cfg.dim.h display area. Parameters hor_tol and vert_tol specify a horizontal and vertical tolerance (in pixel units), such that coordinates near the display border are not categorized as false locks. Parameter tfixfl specifies the minimum number of false lock samples that have to be found within a fixation, to categorize the fixation as a false lock fixation. Both an absolute number can be specified (integer values > 0), and a ratio (fractions between 0 and 1). For example, “tfixfl=50 tfixfl=0.2“ specifies that fixations with 50 false lock samples, and/or 20% false lock samples, are categorized as false lock fixations. Likewise, tsacfl specifies the absolute and relative number of false lock samples in false lock saccades.

Step 3: Remove short gaps

In step 3, short periods of missing data (gaps) are added to the preceding and following eye-state, if possible. For this, the gap duration may not exceed the value of parameter tgap, and the eye-state preceding the gap has to be equal to the eye-state following it. If the surrounding eye-states are fixations, an additional requirement is that the position drift from the preceding to the following fixation does not exceed maxdrift visual degrees per second. For a gap to be combined with surrounding saccades, a requirement is that the saccades are in the same direction.

Step 4: Saccade check

Step 4 checks saccadic parameters, and renames saccades to fixations if the required saccade criteria are not met. Saccades must have a minimum duration tsac (in ms), a minimum average velocity vsac (degrees/ms), a minimum amplitude asac (degrees), a minimum peak amplitude apeak (degrees), and a minimum average velocity from beginning to the peak, vpeak (degrees/ms). If the micro-saccade option is enabled, with keyword micro, saccades that do not meet the above criteria, and have a duration shorter than tsac, are checked with the micro-saccade criteria. They should have a minimum amplitude amicro, a minimum velocity vmicro, a minimum peak amplitude amicropeak, and a minimum peak velocity vmicropeak. Note that a “micro-saccade” is coded as a ordinary saccade. If possible, a saccade that is changed to a fixation, is added to the preceding and/or following fixation.

Step 5: Fixation check

Fixations that are shorter than parameter tfix (in ms), are renamed to oscillations or saccades. If possible, they are combined with the preceding and/or following oscillations or saccades.

Step 6: Blink extension

Extension of eye-blinks. Specified eye-states that precede or follow a blink are added to that blink. Use the keywords fix2blink, sac2blink, fixfl2blink, sacfl2blink, error2blink, and osc2blink, to specify that fixations, saccades, false-lock fixations, false-lock saccades, signal errors, and oscillations are to be added to blinks, respectively. Disable the “repeat” option, with /repeat2blink, to operate only on the two eye-states that directly precede and follow a blink. Otherwise, a blink is extended forward and backward in time, until an eye-state is encountered that is not selected for blink extension. You may use the keyword all2blink, to select all the above eye-state categories for blink-extension, and than individually disable eye-states by preceding their keywords with a slash (e.g., “all2blink /fix2blink /fixfl2blink“ causes all eye-states to be added to blink, except good, and false-lock fixations).

Step 7: Debounce flags

Debounce step: This step is mainly designed to debounce key-presses, but also can be used with the two user flags, and the stimulus-present flag. When a gap exists between two flags of the same kind, and this gap does not exceed a specified value, the two flags are combined. Parameters stimulusgap, flag1gap, flag2gap, rkeygap, and lkeygap specify the maximum gap (in ms) for the stimulus-present flag, user flag1, user flag2, a right-key press, and a left-key press, respectively. Use keygap to specify the gap for both keys at once.

Step 8: Remove short flags

Step 8 removes flags that are shorter than a specified value. Parameters tstimulus, tflag1, tflag2, trkey, and tlkey specify the minimum flag durations for the stimulus-present flag, user flag1, user flag2, a right-key press, and a left-key press, respectively. You may use tkey to set the minimum key-press duration for both keys, and tflags for all flags, simultaneously.

Output format

After completion of the selected steps, in the requested order, the resulting sequence of events have to be reported in the output file. Log information, (i.e., a summary of the effects of the performed steps) is reported in the log file, or may be added to the output file.

General properties

There are several keywords that determine some general properties of the output file and the log file. All reported eye-coordinates are in pixels, visual degrees, or pu units, as selected by the pixels, visual-degrees, and pu-values (mutually exclusive) keywords respectively. By default, coordinates are specified relative to the upper-left corner of the display, or, when the center keyword is used, relative to the center of the display.

Lines in the output file that contain log information, begin with a prefix specified with the settings-prefix parameter. Three different log formats can be chosen with the no-log, short-log, and long-log keywords.

It is possible to store only those events that occurred when a stimulus was present, with the present keyword. By default, /present is used, which means that all data will be reported.

Event format

P-report distinguishes 24 events, that can be reported in the output file. Nine events correspond to the eye(tracker)-state, and are mutually exclusive. The other events are flags, turned on or off, reception of comments or marks, key-press events, trial start or end, etc. The output format for each event can be specified in the settings file. To specify the format of an event type, start a new line with the corresponding event-type keyword (see below), followed by the output format specification on the same line. In this specification, parameter-keywords (see below) that appear between <>, specify which event statistics should appear on which position in the output file. All other text in the format specification is copied literally to the output file. For example, FIX fixation: x=<x>, y=<y> will produce output like “fixation: x=102, y=230”. The same event, but with format, FIX 0 <x><y>, will result in “0 102230”.If the event-type keyword is followed by nothing, that event will not appear in the output file. In this way, you have full control on which events appear in the output, and how.

Below is a list of event-types, with their event-type keyword in the first column, the event type identifier in the second column, followed by a short description. The first nine events are the “eye states”.

Event-type Keywords

FIX
F
good fixation.

SAC
S
good saccade.

FIXFL
f
false-lock fixation.

SACFL
s
false-lock saccade.

BLINK
B
eye-blink.

ERROR
E
Purkinje signal error.

MISSING
M
sampling time-out.

PAUSE
P
period where no sampling occurred, due to a pause-command from the ST.

OSC
O
oscillation.

STIM_ON
V
stimulus appears.

FLAG1ON
I
user flag 1 turned on.

FLAG2ON
J
user flag 2 turned on.

RKEY_DOWN
R
right-key pressed.

LKEY_DOWN
L
left-key pressed.

STIM_OFF
v
stimulus disappears.

FLAG1OFF
i
user flag 1 turned off.

FLAG2OFF
j
user flag 2 turned off.

RKEY_UP
r
right-key released.

LKEY_UP
l
left-key released.

FLAGCHANGE
K
a change in either user flag.

MARK
Q
new mark received from ST.

COMMENT
Z
new comment-string received from ST.

TRIAL
T
start of trial.

GENERAL
X
new configuration (usually, this is the start of the experiment).

By default, all the above events will appear in the output file, with the exception of FLAGCHANGE. To change the default format of a specific event type, specify the format in the settings file, starting with the event-type keyword. When the event-type keyword is followed by nothing, events of that type will not appear in the output file. To reset all event types, include the keyword reset-form. Then, include only those event types that you need.

Below is a list of all parameter-keywords that can follow an event-type keyword (between <brackets>). Note that not all parameters make sense for all event types. All times are in milliseconds.

Parameter Keywords

General

trial
Number of the current trial

stimulus
Stimulus number

state
Event-type identifier (see event-type list)

previous
If the event is an eye-state, then previous gives the preceding eye-state. Otherwise, it gives the current eye-state, during which the event (e.g., a flag or key-press) occurred.

next
Next eye-state identifier

comment
Prints the most recently received comment string.

mark
The value of the most recently received mark (start with 0)

flags
Bitwise combination of the current flag state. Its value is 1 (if the stimulus is present) + 2 (if user flag 1 is on) + 4 (if user flag 2 is on) + 8 (if right key is down) + 16 (if left key is down).

userflags
Current user flag state (0: flags off; 1: flag 1 on; 2: flag 2 on; 3: both flags on).

index
Index number for the current event-type (starts with 0 at the beginning of each trial, increment at each event-type occurrence).
summary
Gives for each of the eye-states the frequency and total duration, for the current trial (if no stimulus has been presented yet), or the most recent stimulus.

Timing of event

t0
Start of the event (absolute PU time)

t0-ttrial
Start of the event, relative to the trial start

t0-tstimulus
Start of the event, relative to the stimulus appearance

t1
End of the event (absolute PU time)

t1-ttrial
End of the event, relative to the trial start

t1-tstimulus
End of the event, relative to the stimulus appearance

tpeak
Time of peak deviation from starting coordinates (absolute)

tpeak-ttrial
Time of peak deviation (relative to trial start)

tpeak-tstimulus
Time of peak deviation (relative to stimulus appearance)

dt
Duration of the event

dtfalse
The number of false lock samples during the current eye state

dtmissing
The number of missing samples during the current eye state

Coordinates of current eye state

x0
Horizontal position at the start of the current eye state

y0
Vertical position at the start of the current eye state

x1
Horizontal position at the end of the current eye state

y1
Vertical position at the end of the current eye state

x
Mean horizontal position during the current eye state

y
Mean vertical position during the current eye state

dx
x1 – x0

dy
y1 – y0

xpeak
Horizontal position of peak of the current eye-state, relative to x0

ypeak
Vertical position of peak of the current eye-state, relative to y0

minx
Lowest value for x during the current eye-state

maxx
Highest value for x during the current eye-state

miny
Lowest value for y during the current eye-state

maxy
Highest value for y during the current eye-state

Timing of flags that are on during the current event

tstim-t0
If a stimulus is present at the beginning of the current event, tstim-t0 is the time of the stimulus appearance, relative to the start of the current event. Otherwise, this parameter is zero.

tflag1-t0
If user flag 1 is on, tflag1-t0 is the time it was set, relative to the current event. Otherwise, it is zero.

tflag2-t0
Flag 2 on time, as for flag 1

trkey-t0
If the right key is down at the beginning of the current event, trkey-t0 is the time it was pressed down, relative to the current event. Zero otherwise.

tlkey-t0
Left key down time, as for right key.

dtstim
Duration of stimulus presence, or zero if there is no stimulus.

dtflag1
Duration of user flag 1, or zero if there is no flag 1

dtflag2
Duration of user flag 2, or zero if there is no flag 2

dtrkey
Duration of right key-press, or zero if the right key is not pressed

dtlkey
Duration of left key-press, or zero if the left key is not pressed

Timing of the previous flags

tprevstim-t0
Begin time of the previous stimulus, relative to the current event, or zero if there was no previous stimulus.

tprevflag1-t0
Begin time of the previous user flag 1, relative to the current event, or zero.

tprevflag2-t0
Begin time of the previous user flag 2, relative to the current event, or zero.

tprevrkey-t0
Begin time of the previous right key-press, relative to the current event, or zero.

tprevlkey-t0
Begin time of the previous left key-press, relative to the current event, or zero.

dtprevstim
Duration of the previous stimulus, or zero

dtprevflag1
Duration of the previous user flag 1, or zero

dtprevflag2
Duration of the previous user flag 2, or zero

dtprevrkey
Duration of the previous right key-press, or zero

dtprevlkey
Duration of the previous left key-press, or zero

Timing of the next flags

tnextstim-t0
Begin time of the next stimulus, relative to the current event, or zero if there was no next stimulus.

tnextflag1-t0
Begin time of the next user flag 1, relative to the current event, or zero.

tnextflag2-t0
Begin time of the next user flag 2, relative to the current event, or zero.

tnextrkey-t0
Begin time of the next right key-press, relative to the current event, or zero.

tnextlkey-t0
Begin time of the next left key-press, relative to the current event, or zero.

dtnextstim
Duration of the next stimulus, or zero

dtnextflag1
Duration of the next user flag 1, or zero

dtnextflag2
Duration of the next user flag 2, or zero

dtnextrkey
Duration of the next right key-press, or zero

dtnextlkey
Duration of the next left key-press, or zero

Configuration info

version
configuration.version

source
“Mouse” or “Purkinje”, depending on configuration.simulate

subject
configuration.subject

experimenter
configuration.experimenter

monitor
configuration.monitor_type

w
configuration.dim.w

h
configuration.dim.h

width
configuration.dim.width

height
configuration.dim.height

distance
configuration.dim.distance

pux0
configuration.dim.pux0

puy0
configuration.dim.puy0

puxrange
configuration.dim.puxrange

puyrange
configuration.dim.puyrange

fl_xtol
configuration.dim.dx

fl_ytol
configuration.dim.dy

ttrial
configuration.ttrial

xcor
configuration.xcor

ycor
configuration.ycor

xa
configuration.xa

xb
configuration.xb

ya
configuration.ya

yb
configuration.yb

settings-file
Name of the settings file that was used by p-report.

Note: Never use spaces in keywords!

Example Settings for P-report

P-report has default settings for all parameters and options, that are not specified in the settings-file. Below is the settings-file that replicates the default settings. In other words, with this settings-file, p-report will function exactly the same as when no (or an empty) settings-file was supplied. For your own experiments, you could make a settings-file specifying only those parameters and options that deviate from their default values. As can be seen in the examples below, comment can be added to the settings-file, using the C++ conventions.

Settings-file, example 1 (p-report’s default values)

/* these are the default settings of P-REPORT */

steps 1 2 3 4 5 6 7 8
// perform all steps, in the default order

clean /refix oscillation sac_lower=4 sac_upper=18 osc_lower=10 osc_upper=13 direction_threshold=2

tfixfl=50 tfixfl=0.2 tsacfl=20 tsacfl=0.2 hor_tol=20 vert_tol=20

maxdrift=0.1 tgap=15

tsac=10 asac=0 vsac=0 apeak=0.1 vpeak=10 /micro tmicro=0 amicro=0 vmicro=0 amicropeak=0 vmicropeak=0

tfix=40

all2blink repeat2blink /fix2blink // this results in: sac2blink fixfl2blink

 // sacfl2blink error2blink osc2blink

stimulusgap=0 flag1gap=0 flag2gap=0 rkeygap=50 lkeygap=50

stimulus flag1 flag2 rkey lkey

tstimulus=0 tflag1=0 tflag2=0 trkey=0 tlkey=0

pixels /center

settings-prefix="# "

short-log

/present

// include data of periods during which no stimulus was present

/reset-form

FIX <state> <previous> <next> <t0-ttrial> <dt> <x> <y> <flags> <mark>

SAC <state> <previous> <next> <t0-ttrial> <dt> <dx> <dy> <flags> <mark>

FIXFL <state> <previous> <next> <t0-ttrial> <dt>

SACFL <state> <previous> <next> <t0-ttrial> <dt>

BLINK <state> <previous> <next> <t0-ttrial> <dt>

ERROR <state> <previous> <next> <t0-ttrial> <dt>

MISSING <state> <previous> <next> <t0-ttrial> <dt>

PAUSE <state> <previous> <next> <t0-ttrial> <dt>

OSC <state> <previous> <next> <t0-ttrial> <dt> <minx> <miny> <maxx> <maxy>

STIM_ON <state> <t0-ttrial> <dt>

FLAG1ON <state> <t0-ttrial> <dt>

FLAG2ON <state> <t0-ttrial> <dt>

RKEY_DOWN <state> <t0-ttrial> <dt>

LKEY_DOWN <state> <t0-ttrial> <dt>

STIM_OFF <state> <t1-ttrial>

FLAG1OFF <state> <t1-ttrial>

FLAG2OFF <state> <t1-ttrial>

RKEY_UP <state> <t1-ttrial>

LKEY_UP <state> <t1-ttrial>

MARK <state> <t0-ttrial> <dt> <mark>

COMMENT <state> <t0-ttrial> <comment>

TRIAL <state> <trial> <t0> <summary>

GENERAL <state> <t0> <ttrial> <w> <h> <width> <height> <distance> <subject>

FLAGCHANGE

Settings-file, example 2 (presently used by the author)

steps 1 2 3 6 5 4 7 8 /* reversed order: First "add-to-blink", then "un-fix", and then "un-sac" */

tfixfl=50 tfixfl=0.2 tsacfl=50 tsacfl=0.5 hor_tol=50 vert_tol=43

tfix=10

/all2blink repeat2blink sac2blink sacfl2blink
// only add saccades to blinks

reset-form
// start with a blank format

FIX <state> <previous> <next> <t0-ttrial> <dt>x<x>y<y>

SAC <state> <previous> <next> <t0-ttrial> <dt> <dx> <dy>

FIXFL <state> <t0-ttrial> <dt>

SACFL <state> <t0-ttrial> <dt>

BLINK <state> <t0-ttrial> <dt>

ERROR <state> <t0-ttrial> <dt>

MISSING <state> <t0-ttrial> <dt>

PAUSE <state> <t0-ttrial> <dt>

OSC <state> <t0-ttrial> <dt>

STIM_ON <state> <t0-ttrial> <dt> <tnextrkey-t0> <dtnextrkey> <summary>

STIM_OFF <state>

RKEY_DOWN <state> <t0-ttrial> <dt>

LKEY_DOWN <state> <t0-ttrial> <dt>

MARK <state> <t0-ttrial> <dt> <mark>

COMMENT <state> <comment>

TRIAL <state> <t0>

GENERAL <state> <w> <h> <width> <height> <distance>

P-vgacal and P-vstcal

Two easily configurable calibration routines have been developed for p-sample, that run on the ST: p-vgacal (for VGA and SVGA) and p-vstcal (for the ATVista). P-vstcal utilizes the PvDSTAGE library, and therefore requires the “p-server.out” load file (see van Diepen, 1997).

Both routines can be started on the ST, without arguments. P-vgacal will then use the standard, 640 x 480 VGA mode, while p-vstcal will start the ATVista in the non-interlaced, 756 x 486 NTSC mode. Ten calibration points will be displayed, along the two diagonals. Calibration points are white, with a black outline, on a grey background. During the calibration, statistics of the most recent measurement will be displayed on the ST screen (p-vstcal), or on the PU screen (p-vgacal). If the measurement is rejected, because of too many bad samples, or a too high standard deviation, the calibration point is presented again. When all points have been presented, the best linear fit is presented, and can be stored in the p-sample settings.

The default settings of the calibration programs can be changed with command line arguments (see below). It is possible to refer to one or more settings files, that contain the required arguments.

Command Line Arguments for P-vgacal and P-vstcal

Italics should be replaced by the appropriate parameter values.

@calfile
Reference to settings file calfile. If no file extension is given, extension “.cal” is appended to the file name. Arguments may appear on different text lines. Text following a “#” character is ignored (use this to include comments in your settings file).

npoints
The number of calibration points. More than one npoints argument can be used. In total, the number of calibration points must be between 2 and 20. By default, the first five points are presented from the top-left corner to the bottom-right corner. The following five are presented from the bottom-left corner to the top-right corner. Points 11 to 15 and points 16 to 20 are positioned on the horizontal and vertical axis through the center, respectively. The prefixes “a”, “b”, “c”, and “d” can be used to explicitly specify the diagonal starting in the top-left corner, the diagonal starting in the bottom-left corner, the horizontal center axis, or the vertical center axis, respectively. A “-“ preceding a prefix, reverses the order of presentation on the corresponding axis. For example “b3 -a5” specifies that three points are presented diagonally, starting in the bottom-left corner, followed with five points on the other diagonal, starting in the bottom-right corner. Another way to specify calibration points is by explicitly supplying coordinates (x,y).

(x,y)
Coordinates of a calibration point. Up to twenty points may be specified, in the desired presentation order. Coordinate arguments can be used in combination with the npoint argument, described above (E.g.: “5 (100,100) (200,150) -c4” will present 11 points).

/n=nsamples
The number of samples, immediately preceding a button-press by the participant, that are included in a calibration measurement.

/ngood=ngood
The minimum number of good samples (i.e., excluding blinks and errors) that has to be available in a measurement, to calculate the gaze direction. Obviously, ngood should not exceed nsamples!

/sd=sd
The maximum standard deviation sd that is allowed in a measurement (pu units). When sd is set to zero, no check is performed.

/dx=(dx1,dx2)
Left (dx1) and right (dx2) margins of the display (pixel units).

/dx=dx
Set the left and right margins simultaneously.

/dy=(dy1,dy2)
Top (dy1) and bottom (dy2) margins of the display.

/dy=dy
Set the top and bottom margins simultaneously.

/d=d
Set the left, right, top, and bottom margins simultaneously.

/r=radius
The calibration point radius (pixel units)

/l=linewidth
Line width of the calibration point border (pixel units).

/b=grey
Grey-level (between 0 and 255) of the display background.

/b=(r,g,b)
RGB color of the display background. The red, green, and blue color values should be between 0 and 255. To set a grey-level, /b=grey can be used instead.

/i=grey
Grey-level of calibration point.

/i=(r,g,b)
RGB color of calibration point.
/o=grey
Grey-level of calibration point border.

/o=(r,g,b)
RGB color of calibration point border.

/t=time
Pause between two calibration point presentations (millisec).

/show
Display the calibration points, without contacting the PU (for test purposes).

/?
Display help text.

/vmode
ATVista video mode (p-vstcal only). Two modes are selectable: NTSC (756 x 486 non-interlaced, 60 Hz refresh) and PAL (740 x 578 non-interlaced, 50 Hz refresh). If argument /vmode is not supplied, by default the NTSC mode is initialized. However, if the DOS environment variable “V228” is present, ATVista settings are taken from that variable (see the p-init-v.c source code for more details). To avoid this, always include either /NTSC or /PAL.

/resolution
Calibration display resolution (p-vgacal only). Five resolutions are selectable: 320 x 200 (1), 640 x 480 (2), 800 x 600 (3), 1024 x 768 (4), and 1280 x 1024 (5). Fill in the horizontal resolution, or the video-mode number (between brackets) for resolution, to select a resolution. Note that not all screens and graphics cards are capable of displaying the high resolution modes!

Other Programs

All programs described in this report work with the new p-file format. To enable the use of these programs with old pu-x and pu-y data files, these files can be converted to p-files using the p-xyz2p program. Vice versa, for old programs, p-files can be converted to pu-x, pu-y and pu-z files (pu-z files are text files that contain the comment-strings and marks from the p-file), using p-p2xyz..

P-sample is able to store eye-data in both the p-file and pu-xyz formats. However, I recommend that only the p-file format is selected, because (1) p-files are much smaller than pu-xyz files, (2) they are more complete than pu-xyz files, and (3) they can be converted easily to the pu-xyz format.

P-xyz2p

Old data files, in the pu-x and pu-y format, can be converted to p-files by p-xyz2p. In this way, the new software can be used with old data! The first (required) argument is the name of the pu-x or pu-y file. By default, the resulting p-file will have the same name, but with the “x” or “y” replaced by “p”. Alternatively, the second (optional) argument specifies the name of the p-file. A “+” sign preceding the p-file name requests that the output is appended to that file.

P-p2xyz

P-p2xyz is a conversion program that converts p-files to the pu-xyz format. Conversion is required when using the Van Rensbergen and De Troy (1993) programs. P-p2xyz requires either the p-file name or the p-file date and serial number as argument(s). For example, “p-p2xyz PU120998.03P “ and “p-p2xyz 12/09/98 3” are both allowed. It produces three files: PU120998.03X, PU120998.03Y, and PU120998.03Z.

P-join

Multiple p-files can be combined to a single file by p-join. Combined p-files still can be processed with p-report and p-pview, even when the individual p-files contain different configurations. However, combined p-files cannot be converted to pu-xyz files! The first argument that is passed to p-join, has to be the name of the output file, followed by the names of the source p-files. The source file names may contain wildcards. Additionally, a log-file can be specified (/l=logfile), and an error-file (/e=errorfile). By default, calibration files are not included in the output file, unless argument /c is supplied. To suppress display output, use switch /-d. For example: p-join combined.p /-d pu*.??p /e=errors.txt /l=log.txt produces the combined p-file “combined.p”, error-file “errors.txt”, and log-file “log.txt”.

P-info

P-info displays information from the first configuration in a p-file. It can also process p-sample setting-files. Supply the file name, or the date (see p-p2xyz). With p-info, calibration data can be inspected, both numerically and graphically. Note that with combined p-files, only information of the first configuration is displayed.

File Management

Researchers that have worked with eye-movement data before know that it can be difficult to keep track of the large number of data files, even when they are associated with a single experiment. Therefore, the p-file format was designed such, that they can be combined to a single p-file. This can be done immediately after the data are obtained, using p-join, or when filtering the data, using p-report. There are no restrictions on the names of p-files, except when you want to use p-p2xyz or p-xyz2p. P-sample, however, generates files that are named according to the psample convention: “PUddmmyy.ss*”, where “dd” is the date code, “mm” is the month code, “yy” is the year code, and “ss” is the serial number. There is no need to follow this convention during later stages of the data processing.

A possible file management and naming scheme is to combine the p-files from each participant to a single file (using p-join), with a name that contains information about the participant and the experiment. Supply this file to p-report, to generate one report file, and optionally a q-file, for each participant. For example, suppose that you are running an experiment named “EXP1”, and the third participant produced three p-files: “PU061198.01P”, “PU061198.02P” and “PU061198.03P”. Combine these with p-join:

p-join exp1pp3.p pu061198.??p

The three p-files are combined to the new p-file “EXP1PP3.P”. Use this file as input file for p-report:

p-report exp1pp3.p /q @exp1.set

This will generate a report file named “EXP1PP3.R”, and a q-file named “EXP1PP3.Q” (omit switch /q if no q-files is wanted). Settings file “EXP1.SET” determines how the data is filtered, and the output format. Alternatively, if you want a single report file for all participants, use:

p-report exp1pp3.p +exp1.r @exp1.set

This will add the data report of participant 3 to the report file “EXP1.R”.

If you would like to keep the raw p-files, instead of combining them using p-join, use p-report to combine the report files (and optionally the q-files):

p-report pu061198.01p exp1pp3.p @exp1.set

p-report pu061198.02p +exp1pp3.p @exp1.set

p-report pu061198.03p +exp1pp3.p @exp1.set

Even better, you could first give more informative names to the raw data files (e.g., rename the p-files in the example above to EX1PP3_1.P, EX1PP3_2.P and EX1PP3_3.P).

Again, instead of creating one report file for each participant, a general report file could be created, by adding the reports of all participants to the same report file (e.g., “EXP1.R”).

An advantage of using file extensions such as “.p”, “.q” and “.r” is that, with Windows, a program can be associated with these extensions. For example, Windows can be configured to automatically open p-files and q-files with p-pview, and to open report files with Notepad or Wordpad. This is not possible for extensions that contain a serial number.

Year 2000

The present software uses the time_t type for all time and date functions. A time_t value represents the number of seconds, elapsed since 00:00:00 GMT, January 1, 1970. According to the Borland C documentation, the time_t value will work until the hour of 3:14:07 on the year 01/19/2038.

P-files created by p-sample contain a two-digit year code. Of course, in the year 2000, this code will be 00. Internally, however, the p-file configuration stores the correct time as configuration.ttrial. All programs use this value, and not the year code in the file name (e.g., p-join uses ttrial to sort data files).

Still, a “millenium” problem can arise with older PC’s, because their system clock does not support the year 2000. To test this, set the system date to 2000 (at the DOS prompt, do not connect to a network), turn off the PC and back on again, and check the date. Most Pentiums will work fine.

References

van Diepen, P. M. J. (1997). PvDSTAGE Version 1.0 Reference Manual. An extension of the STAGE library for the ATVista (Psych. Rep. No. 215). Laboratory of Experimental Psychology, University of Leuven, Leuven, Belgium.

van Diepen, P. M. J., Ruelens, L., & d'Ydewalle, G. (in press). Brief foveal masking during scene perception. Acta Psychologica.

Van Rensbergen, J., & De Troy, A. (1993). A reference guide for the Leuven dual-PC controlled Purkinje eyetracking system (Psych. Rep. No. 145). Laboratory of Experimental Psychology, University of Leuven, Belgium.

Author Note

Correspondence concerning this report should be addressed to Paul van Diepen, Laboratory of Experimental Psychology, University of Leuven, Tiensestraat 102, B-3000 Leuven, Belgium (e-mail: Paul.vanDiepen@psy.kuleuven.ac.be).

Thanks to Peter De Graef for comments on an earlier draft

Appendix A: Listing of ST-EXAMP.C, a hypothetical experiment

#include <stdio.h>

#include <dos.h>

#include <dir.h>

#include <string.h>

#include <conio.h>

#include <p-pucomm.c>

void some_sort_of_calibration_check(void) { return; }

void display_stimulus(void) { delay(200); return; }

main ()

{

 configuration cfg;

 statistics stats;

 coordinates current, sacstart;

 byte puStatus, previousStatus, status = 0;

 unsigned int dt;

 unsigned long t, tkey;

 int trial=0, key;

 // All P-PUCOMM commands can be interrupted by an escape-character (in this program

 // always 0x1b, the Esc key). Whenever the escape-character is non-zero, keypresses

 // returned by bios command "bioskey(0)" are stored in "lastbioskey", and compared

 // to the supplied escape-character. When identical, the command is terminated, and

 // "terminatePUcommunication" has to be executed to stop the PU. Otherwise, the key-

 // code is left in "lastbioskey" and no further action is taken

 extern int lastbioskey;

 cprintf("\n\rST demonstation program, for usage with P-SAMPLE");

 cprintf("\n\rContacting PU... ");

 if (pInit8255master(0x1b)) return;

 cprintf("\n\rReading configuration... ");

 if (getPUconfiguration(&cfg, 0x1b)) goto terminate;

 // You may change settings, and send them back to the PU

 // However, a change of cfg.dim.pux0, cfg.dim.puy0, cfg.dim.puxrange, cfg.dim.puyrange,

 // cfg.dim.w, or cfg.dim.h, makes the calibration invalid!

 // After changing cfg.dim.dx, cfg.dim.dy, cfg.dim.width, cfg.dim.height, or cfg.dim.distance,

 // the "puUpdateScaling" command is required to update internal PU settings

 // For example, let's change the monitor description, and the false lock tolerance:

 strcpy(cfg.monitor_type, "unknown type");
// Beware: Maximum monitor name is 16 characters,

// including the NULL terminator

 cfg.dim.dx = 15; cfg.dim.dy = 5;

 cprintf("\n\rSending parameters... ");

 if (sendPUconfiguration(&cfg, 0x1b)) goto terminate;

 // Since we changed the false lock tolerance, "puUpdateScaling" has to be used

 if (puUpdateScaling(0x1b)) goto terminate;

 // At any time after connection, strings can be send to the PU. They are saved along

 // with the current-movement data (PUddmmyy.ssZ file). However, the PU string and data buffers

 // are cleared at the beginning of each trial. When we send a string before the start of a

 // trial, it will never be saved!

 if (sendPUstring("This string will not be stored", 0, 0x1b)) goto terminate;

 // Everything is ready now. Lets start the trial

 cprintf("\n\rReady to start. Press a key (escape to quit)...");

 if (getch() == 0x1b) goto stop;

trial_start:

 // Start the trial in sleepmode

 lastbioskey = 0;
// see above

 ++trial;

 if (puStartSleepmode(0x1b)) goto terminate;

 // From now on, string are stored and can be saved after the trial

 if (sendPUformattedString(0, 0x1b, "This is the first string that will be stored for trial %d", trial)) goto terminate;

 // Let's wait for a right-key press by the subject

 cprintf("\n\rWaiting for subject's right key... ");

 do if (getPUstatus(&puStatus, 0x1b)) goto terminate; while (puRightKeyUp(puStatus));

 // Read the current time

 if (getPUtime(&tkey, 0x1b)) goto terminate;

 // Wait until the right-key is up for 50 millisec

 do

 {

 if (getPUtime(&t, 0x1b) || getPUstatus(&puStatus, 0x1b)) goto terminate;

 if (puRightKey(puStatus)) tkey = t;

 } while (t - tkey < 50);

 // End of key-press. Usually, there will be a calibration check now

 some_sort_of_calibration_check();

 // Calibration check okay, start the trial

 if (puStartTrial(0x1b)) goto terminate;

 // Send some information about what's happening

 if (sendPUformattedString(0, 0x1b, "Trial started at t=%lu", t)) goto terminate;

 cprintf("\n\rTrial %d started (subject's left key stops the trial)", trial);

 display_stimulus();

 // stimulus visible

 if (puStimulusPresent(0x1b)) goto terminate;

 // trial loop

 for(;;)

 {

 if (getPUsampleInfo(&puStatus, &previousStatus, &t, &dt, ¤t, 0, &sacstart, 0, 0, 0x1b)) goto terminate;

 // "t" is the current time.

 // The status-bits represent (bit7..bit0):

 // <Signal Okay/Error> <Blink/Track> <On Time/Time Out> <Good/False Lock> <Saccade/Fixation>

 // <Stimulus Absent/Present> <Left Key Down/Up> <Right Key Down/Up>

 // Macro puEyeState selects status bits <Signal Okay/Error>, <Blink/Track>, <Good/False Lock>, and

 // <Saccade/Fixation>

 // "previousStatus" was the previous puEyeState(puStatus), and "dt" is the duration of the

 // current puEyeState(puStatus) (i.e., the current state started at t-dt).

 // set flag1 for 1 sample whenever dt == 100

 if (dt == 100 && puPulseFlag1(0x1b)) goto terminate;

 // detect EyeState changes

 if (puEyeState(puStatus) != puEyeState(status))

 {

 status = puStatus;

 // set flag2 for 1 sample, whenever a saccade changed in a fixation

 if (puSaccade(previousStatus) && puFixation(puStatus) && puPulseFlag2(0x1b)) goto terminate;

 if (puSignalError(puStatus)) cprintf("\n\rSignal Error");

 else if (puBlink(puStatus)) cprintf("\n\rBlink");

 else

 {

 // saccade or fixation

 if (puFixation(puStatus)) cprintf("\n\rFixation on (%d,%d)", current.x, current.y);

 else cprintf("\n\rSaccade from (%d,%d)", sacstart.x, sacstart.y);

 if (puFalseLock(puStatus)) cprintf(" FALSE LOCK!");

 }

 }

 // stop when the left-key is pressed

 if (puLeftKey(puStatus)) break;

 }

 // end of trial

 // After "puStopTrial", samples are not stored anymore, but the sampling does

 // continue, and eye-movements / key-presses can be used to get answers from

 // the subject, without storing the eye-movement data.

 if (puStopTrial(0x1b)) goto terminate;

 // Maybe there was a keypress during the last trial?

 if (lastbioskey) cprintf("\n\rLast key pressed during the trial: %c (extended key-code 0x%4X)", (char)lastbioskey, lastbioskey);

 // suppose that statistics are required about the last 100 ms before the key-press

 // Parameters "tquery" and "dtquery" select a part of the data, to be analyzed

 // by the "getPUstatistics" command. When dtquery > 0, samples tquery <= t < tquery + dtquery are

 // analyzed (t = time of sample). Otherwise, samples tquery + dtquery < t <= tquery are analyzed.

 // When tquery < 0, tquery is replaced by the current time

 // To analyze the most recent sample, and the 99 samples before it:

 // if (sendPUtquery(-1L, 0x1b) || sendPUdtquery(-100, 0x1b)) goto terminate;

 // That would include the keypress, and maybe one or two samples more (because time went on)

 // Since we know the time of the key-press (t), we can do the following:

 if (sendPUtquery(t-1, 0x1b) || sendPUdtquery(-100, 0x1b)) goto terminate;

 // Get statistics about from t-101 .. t-1

 if (getPUstatistics(&stats, 0x1b)) goto terminate;

 // Note that the statistics use pu-units, not pixel-units!

 cprintf("\n\rLast 100 ms before key-press (%d good samples): %d<x<%d, %d<y<%d", stats.n, stats.minx-1, stats.maxx+1, stats.miny-1, stats.maxy+1);

 if (stats.n) cprintf("\n\rmean(x) = %0.1lf, mean(y) = %0.1lf", (double)stats.sumx/stats.n, (double)stats.sumy/stats.n);

 if (stats.n>1) cprintf(", sd(x) = %0.2lf, sd(y) = %0.2lf", sqrt((stats.sumx2 - SQR((double)stats.sumx)/stats.n)/(stats.n-1)), sqrt((stats.sumy2 - SQR((double)stats.sumy)/stats.n)/(stats.n-1)));

 // Trial has ended, but is not saved yet. We still can send strings to the PU

 if (sendPUformattedString(0, 0x1b, "Trial %d ended at t=%lu", trial, t)) goto terminate;

 // Now, save data (or not)

 cprintf("\n\rSave data of trial %d (y/n)? ", trial);

 do key = toupper(getch()); while (key != 'Y' && key != 'N');

 // "waitForPU" is not required, but can be used to wait until the trial is saved

 if (key == 'Y' && (puSaveData(0x1b) || waitForPU(0x1b))) goto terminate;

 cprintf("\n\rNext trial (t), next block (b), or quit (q)? ");

 do key = toupper(getch()); while (key != 'T' && key != 'B' && key != 'Q');

 if (key == 'T') goto trial_start;

 if (key == 'B')

 {

 // Trial data are appended to the data of previous trials (i.e. to the same pu-files)

 // until the following command is given, upon which a new pu-files are created

 if (puNewDataFile(0x1b)) goto terminate;

 goto trial_start;

 }

stop:

 cprintf("\n\rSending exit code to PU...");

 if (puStopExperiment(0x1b)) goto terminate;

 return;

terminate:

 cprintf("\n\rTerminating communication with PU...");

 terminatePUcommunication(0x1b);

 return;

}

Appendix B: Saccade/Fixation/Oscillation Categorization

For eye-contingent display changes, fast on-line eye-state categorization is necessary. The algorithm that is used in p-sample and p-report use was originally developed by Andreas De Troy, and is described below. It may look a bit strange. This is because the formulas are "tuned" in a trial-and-error way, and are not explicitly based on some velocity or acceleration criterion. But it works really well!

The (x,y) eye position is sampled every ms (with a DPI Eye-tracker). Two status bits of the DPI tracker pre-categorize the eye state as blink, signal error, or track. If the eye state according to the DPI tracker is track, the algorithm determines if the eye is fixating or saccading, based on the current eye-position sample, the previous five eye-position samples, and the previous eye state. This algorithm, used by p-sample, and optionally by p-report, is described below. Following the saccade/fixation categorization, p-report can evaluate saccades for the presence of eye-tracker oscillations (see further).

Saccade/Fixation categorization

Let's first define some symbols:
x(t) = sample of horizontal eye position (in visual degrees) at time t

(t=0 is the most recent sample, t=-1 is the previous sample, etc.).
y(t) = sample of vertical eye position (in visual degrees) at time t
state(t) = eye state (blink, signal error, fixation, or saccade) at time t
|x|= absolute value of x

Now, calculate two variability statistics, named xvar and yvar:

xvar = |x(-5) - x(-4)| +
 |x(-4) - x(-3)| +
 |x(-2) - x(0)| +
 |x(-3) - x(0)| +
 |x(-4) - x(0)| +
 |x(-5) - x(0)| +
 ((x(-3) - x(-2))2 +
 (x(-2) - x(-1))2 +
 (x(-1) - x(0))2) * 50

yvar = |y(-5) - y(-4)| +
 |y(-4) - y(-3)| +
 |y(-2) - y(0)| +
 |y(-3) - y(0)| +
 |y(-4) - y(0)| +
 |y(-5) - y(0)| +
 ((y(-3) - y(-2))2 +
 (y(-2) - y(-1))2 +
 (y(-1) - y(0))2) * 50

Generally, low values for xvar and yvar denote a fixation. One could simply choose a criterion to compare the values of xvar and yvar with. Better, two criteria should be set, a lower lowcrit, and a higher highcrit. When the previous eye state was categorized as a fixation, compare xvar and yvar with highcrit. Otherwise, compare xvar and yvar with lowcrit: In this way, a hysteresis is created for a change in eye state. By default, p-sample and p-report use lowcrit = 0.08, and highcrit = 0.36. These values are derived from the p-sample (p-report) parameters saccade_lower_bound (sac_lower) and saccade_upper_bound (sac_upper), respectively, by dividing these settings by 50. The pseudo code below illustrates the decision rule:

if state(-1)= fixation
{
 if xvar < highcrit, and yvar < highcrit, then state(0)= fixation, else state(0)= saccade
}

if state(-1)= saccade, blink, error
{
 if xvar < lowcrit, and yvar < lowcrit, then state(0)= fixation, else state(0)= saccade
}

Saccade/Oscillation categorization

P-report is able to distinguish saccades from eye-tracker oscillations. It counts the number of saccade direction changes within a 32 ms window, starting from the beginning of a saccade. If more than osc_upper direction changes occurred within the 32 ms interval, the entire interval is renamed to oscillation. The time-window then is shifted 1 ms, and the procedure is repeated. If the first sample in the window is categorized as oscillation, the number of direction changes is compared to osc_lower instead of osc_upper. The direction_threshold parameter specifies the sensitivity to saccade direction changes (in pu units).

Note that with a properly working eye-tracker, the number of oscillations should be near to zero. A relatively high number of oscillations may indicate that the eye-tracker needs servicing! In that case, you occasionally might hear “beeps” (oscillatory tones) while tracking, especially after blinks.

29

